The effective geometry Monte Carlo algorithm: Applications to molecular communication
نویسندگان
چکیده
منابع مشابه
Monte Carlo Dose Algorithm
Conventional dose calculation algorithms, such as Pencil Beam are proven effective for tumors located in homogeneous regions with similar tissue consistency such as the brain. However, these algorithms tend to overestimate the dose distribution in extracranial regions such as in the lung and head and neck regions where large inhomogeneities exist. Due to the inconsistencies seen in current calc...
متن کاملA Noisy Monte Carlo Algorithm
We propose a Monte Carlo algorithm to promote Kennedy and Kuti’s linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. This is achieved by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations. We test it on the five state model and obtain desirable results even for the case with large noise. We ...
متن کاملA Stochastic Monte Carlo Algorithm
We propose a Monte Carlo algorithm to promote Kennedy and Kuti’s linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. The probability upper bound violations are avoided by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations and the lower bound violations can be absorbed into the observables. W...
متن کاملSimple Monte Carlo and the Metropolis algorithm
We study the integration of functions with respect to an unknown density. Information is available as oracle calls to the integrand and to the nonnormalized density function. We are interested in analyzing the integration error of optimal algorithms (or the complexity of the problem) with emphasis on the variability of the weight function. For a corresponding large class of problem instances we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2019
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2019.05.029